ET070  Hydroflex™ Hydrogen Reference Electrode



ET070 Hydroflex™ Hydrogen Reference Electrode
ET070 Hydroflex™ Hydrogen Reference Electrode
 
 
Unit Price: $ (USD) 295.00

 

Traditionally, a hydrogen reference electrode requires passing hydrogen gas over a platinised platinum sheet. Configuring the platinum plate and bubbler mechanism within an electrode body is not a trivial matter, and the need for a hydrogen gas cylinder creates issues with space, expense, and safety. No wonder that workers so often resort to other types of reference electrode!

The HydroflexTM electrode has an internal, replaceable, cartridge that continuously generates a low volume hydrogen flow that passes through a platinized gas diffusion electrode, resulting in a compact reference electrode without the need for a separate hydrogen source.

You can use the Hydroflex electrode to calibrate your everyday Ag/AgCl or calomel electrodes, or use it as the reference electrode in situations where other electrodes might not be suitable. For example, Hydroflex is particularly suitable as a reference electrode in aqueous acid or alkali solutions, and can be used at pressures up to 10 bar and temperatures of up to 210 °C.

Citations

Synthesis and Oxygen Reduction Electrocatalytic Property of Platinum Hollow and Platinum-on-Silver Nanoparticles.  Zhenmeng Peng, Jianbo Wu, and Hong Yang.  Chemistry of Materials, 22, 1098–1106, 2010.  DOI: 10.1021/cm902218j

Electrocatalytic Properties of Pt Nanowires Supported on Pt and W Gauzes.  Eric P. Lee, Zhenmeng Peng, Wei Chen, Shaowei Chen, Hong Yang, and Younan Xia.  ACSNano, 2 , 2167–2173, 2008.  DOI: 10.1021/nn800458p

Direct Oxidation of Methanol on Pt Nanostructures Supported on Electrospun Nanofibers of Anatase.  Eric Formo, Zhenmeng Peng, Eric Lee, Xianmao Lu, Hong Yang, and Younan Xia.  Journal of Physical Chemistry. C, 112, 9970–9975, 2008.  DOI: 10.1021/jp803763q

Noble Metal-Free Hydrazine Fuel Cell Catalysts: EPOC Effect in Competing Chemical and Electrochemical Reaction Pathways.  Jean Sanabria-Chinchilla, Koichiro Asazawa, Tomokazu Sakamoto, Koji Yamada, Hirohisa Tanaka, and Peter Strasser.  Journal of the American Chemical Society, 133, 5425–5431, 2011.  DOI: 10.1021/ja111160r

CO Oxidation on Gold in Acidic Environments: Particle Size and Substrate Effects.  Brian E. Hayden, Derek Pletcher, Michael E. Rendall, and Jens-Peter Suchsland.  Journal of Physical Chemistry. C, 111, 17044-17051, 2007.  DOI: 10.1021/jp074651u

Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells.  Bharat Avasarala, Thomas Murray, Wenzhen Li and Pradeep Haldar.  Journal of Materials Chemistry, 19, 1803–1805, 2009. DOI: 10.1039/b819006b

The influence of support and particle size on the platinum catalysed oxygen reduction reaction.  Brian E. Hayden, Derek Pletcher, Jens-Peter Suchsland and Laura J. Williams.  Physical Chemistry Chemical Physics, 11, 9141–9148, 2009.  DOI: 10.1039/b910110a

The influence of Pt particle size on the surface oxidation of titania supported platinum.  Brian E. Hayden, Derek Pletcher, Jens-Peter Suchsland and Laura J. Williams.  Physical Chemistry Chemical Physics, 11, 1564–1570, 2009.  DOI: 10.1039/b817553e

Synthesis and application of RuSe2+d nanotubes as a methanol tolerant electrocatalyst for the oxygen reduction reaction.  Pedro H. C. Camargo, Zhenmeng Peng, Xianmao Lu, Hong Yang and Younan Xia.  Journal of Materials Chemistry, 19, 1024–1030, 2009.  DOI: 10.1039/b816565c

Fourier transform electrochemical impedance spectroscopic studies on platinum electrodes in an acidic medium.  Jin-Bum Park, and Su-Moon Park.  Journal of Electroanalytical Chemistry, in Press.  DOI: 10.1016/j.jelechem.2010.10.026

The influence of support and particle size on the platinum catalysed oxygen reduction reaction.  Brian E. Hayden, Derek Pletcher, Jens-Peter Suchsland and Laura J. Williams.  Journal of Materials Chemistry, 19, 1024–1030, 2009.  DOI: 10.1039/b816565c

A new application for nickel foam in alkaline fuel cells.  F. Bidault, D.J.L. Brett, P.H. Middleton, N. Absond, N.P. Brandon.  International Journal Hydrogen Energy, 34, 6799 – 6808, 2009.  DOI: 10.1016/j.ijhydene.2009.06.035

An improved cathode for alkaline fuel cells  F. Bidault, D.J.L. Brett, P.H. Middleton, N. Abson, and N.P. Brandon.  International Journal Hydrogen Energy, 35, 1783 – 1788, 2010. DOI: 10.1016/j.ijhydene.2009.12.035

A novel cathode for alkaline fuel cells based on a porous silver membrane.  F. Bidault, A. Kucernak.  Journal of Power Sources, 195, 2549–2556, 2010.  DOI: 10.1016/j.jpowsour.2009.10.098

The evolution of the performance of alkaline fuel cells with circulating electrolyte.  P. Gouérec, L. Poletto, J. Denizot, E. Sanchez-Cortezon, J.H. Miners.  Journal of Power Sources 129, 193–204, 2004.  DOI: 10.1016/j.jpowsour.2003.11.032

Homogenization of the current density in polymer electrolyte fuel cells by in-plane cathode catalyst gradients.  M. Santis , S.A. Freunberger, A. Reiner, F.N. Büchi.  Electrochimica Acta 51, 5383–5393, 2006.  DOI: 10.1016/j.electacta.2006.02.008

 
  • Length: 120 mm
  • Diameter: 8 mm shaft
  • Connection: socket for 2 mm pin (4 mm adaptor supplied)
  • Material of shaft: PTFE (polytetrafluoroethylene)


 

© copyright 2002 - 2024   eDAQ - data recording made simple
       website by frogwebworks
© copyright 2002 - 2024   eDAQ - data recording made simple
website by frogwebworks
© copyright 2002 - 2024 eDAQ - data recording made simple website by frogwebworks
© copyright 2002 - 2024 eDAQ - data recording made simple
website by frogwebworks