Designed by ZIVELAB

Compact Type Electrochemical Workstation ZIVE SP1

Including Internal FRA 10Volts/1Amp Full Software Package Included

> For Corrosion Material Testing Sensor/BioElectrochemistry Battery/Fuel Cell Super Capacitor/Solar Cell

The ZIVE SP1 is an outstanding Potentiostat/Galvanostat/FRA offered at affordable price. This powerful model is a perfect choice for the electrochemical applications.

The **ZIVE SP1** is equipped with a frequency response analyzer(FRA) for system as standard and it provides high performance impedance measurements over the frequency range 10uHz to 1MHz. The ZRA(zero resistance ammeter) function can measure max. 1 Amp in galvanic corrosion technique. Four(4) advanced software packages, which are catagorized by application field, are provided with the system as standard. Consequently, it widens ZIVE SP1's flexibility.

Features

- Economical high quality Potentiostat/Galvanostat/Impedance Analyzer
- Compact size with full functions
- Smart LCD display
- Wide current ranges(1nA~1A) for various applications
- Built-in FRA : enables EIS tests by using software
- **14** EIS techniques capability including multisine
- Capable of multitude of applications - Corrosion, general electrochemistry, sensor, battery, fuel cell, supercapacitor, solar cell, etc.
- Current interrupt IR measurement IR compensation(dynamic, positive feedback)
- Bipolar pulse capability
- Voltage pulse or current pulse charge/discharge test(GSM,CDMA etc.), sine wave function for ripple simulation in battery test package & pulse plating available
- High speed data sampling time
- 50usec/sample in burst mode
- 1msec/sample in normal mode
- 2usec/sample in fast sweep mode
- Fast sweep mode(5000V/sec with 10mV data sampling)
- 3 measurement/control voltage ranges & 10 measurement/control current ranges
- Internal 295,000 data point storage & continuing experiment regardless of PC failure.
- Full software package included as standard
- Corrosion test software package (CORe)
- EIS test software package (EISe)
- Electrochemical analysis software package (EASe) Energy software package (BATe)
- Multichannel configuration available
- Free software upgrade

Application

The ZIVE SP1 electrochemical workstation is ideal for fundamental research in electrochemistry, development and quality assurance of new sensors, corrosion/coatings, electrode material, membrane, conducting polymer, evaluation power device research such as battery materials, fuel cells, super capacitors and solar cells.

General Electrochemistry

The **ZIVE SP1** is also suitable for the development of bio-research, electron transfer kinetic studies or electrochemical analysis of compounds.

Batteries

The system is very well adapted for researches on the cycling behavior of battery. It supports voltage spectroscopy)/ GITT/PITT test. Fast pulse capability for GSM, CDMA test is included in battery test software package. Pulse profile measurement function to check pulse shape is available. For ripple simulation test, sine wave charging/discharging is available.

Solar Cells

Solar cell development and production require extensive material and device testing to improve efficiency and match individual cells for panel photovoltaic cell characterization.

The system is suitable for measuring low corrosion rates and EIS test to evaluate corrosion. ZRA function is supplied for galvanic corrosion measurement.

Sensors

The ZIVE SP1 can be used for sensor research using with DNA chips or screen printed electrodes. System's minimum current range is 1nA(with gain). Cyclic voltammetry, Chronoamperometry and EIS measurement can be used for this application.

Super Capacitors

The ZIVE SP1 has fast potentiostat circuit with high speed data acquisition (50usec/point, burst mode). This function is well applicable to super capacitors testing. Charging/discharging capability is used for this application

Corrosion

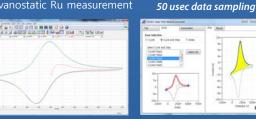
Fuel Cells

The ZIVE SP1 is ideal for characterizing the fuel cells and anodic/cathodic process mechanism at development and research grade. This system can be directly used for PEMFC, DMFC, and DEFC etc. Automatic current ranging potentiostatic/galvanostatic IV curve is available.

Smart Manager(SM) Software

Peak find module

The Smart Manager(SM) provides user defined sequential test by using sequence file, technique menu and batch file. The batch file allows the users to do a serial test by combining sequence files and/or technique files.


The SM software is easy to use and supports various electrochemical experiments including functions of system control, schedule file editor, real time graph, analysis graph, user calibration, and data file treatment etc.

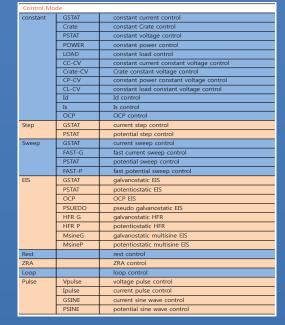
Each software package's upgrade will be provided at free of charge.

Basic Techniques

Basic Technique with Standard Functions

- 1) Potentiostatic
- 3) Double step potentiostatic
- 4) Double step galvanostatic
- 6) Potential sweep
- 7) Current sweep
- 8) Cyclic voltammetry
- 9) Fast potential sweep
- 10) Potentiostatic Ru measurement
- 11) Galvanostatic Ru measurement

DC graph


The above functions can be used sequentially by step control function.

Sequence Editor

User can design his/her own experiment procedure by using TASK sequential routine editor.

					coin.ccv.;									
ATION							[Seque	ince]						
	Add D	elete	mert[Up]	nsert[0n]	O.t.	Copy	Paste(D	n) Save	Apply 1	a OH			View ter	d informatio
	Cantral	1000	Configurat	ian .	G	mentOAS	Vult	tage05	110000000	10000			1.000	1000
F10+1	Carao	Type	Node	Range	Baf	Value	Bef.	Value						
0FF NO=1 1 CC-CV-5.00 +	CONSTANT	- CC-CF	· HORMAL	 AUTO 	· 280 ·	3.0000e-3	Def +	4.2000e+0						
5.00 2	8857	NORMAL	NORMAL											
3000	CONSTANT	GSTAT	NORMAL.	AUTO	ZIRO	-5.0000e-3								
4	R857	NORPHAL	NORMAL											
1.5	LOOP	CYCLE												
200	875	GSTAT	100	4,10	Iternal	100.00e+3		100.00e+3	100	00e-3	229-0	0.0000e+0	8.0000e-3	10
1000	APST	NORMAL	NORMAL		1									
	100*	NORMAL	Sauces											
0m=10 4		NORMAL		[O/L O	ff Condition	n]				7		[Mac.	setting 1	,
	100		4500-1	[Cut 0	ff Condition		Marc 2			(Trief)			setting]	
	100		dition-1 Deformation		ff Conditio		Detroit	e DeltaTive	61°	Lef		00	Deforialue	Defative
•	LOOP	Care	Detailake		1.00	Care		e DellaTime	Ga P [®]	1	Taneto	• >+	Deformation	Delta ^m ine
•	LOOP	Can Of	Detailake		244	Care		e Detaffree	Ge P	LHF 1 2	Time()	• 3 • t 3•	Deformation	DeltaTive C
•1	LOOP Den Current	Can Of	Detailake		244	Care		e Detafine	Ga Pres	1	Time(x) 3dV/A (x0,/4	09 • >= t >= t >=	Deformation	DeltaTive C
4 4 1 2	LOOP Dem Carrent None	Can Of	Detailake		244	Care		e Detafine	Ge P	1 2 5 4	Tanarda 3/51/8 1/62/10 Nave	00 • 7+ t] 2+ t] 2+	Deformation	DeltaTive C
1	LCOP Den Current None	Can Of	Detailake		244	Care		e Detafine	Ga Pres	1	Time(x) 3dV/A (x0,/4	00 • 7+ t] 2+ t] 2+	Deformation	DeltaTive C
1	LCOP Dam Corrett None None	Can Of	Detailake		244	Care		e DettaTive	Ga Pres	1 2 5 4	Tanarda 3/51/8 1/62/10 Nave	00 • 7+ t] 2+ t] 2+	Deformation	DeltaTive C
4. 1 1 2 3 4 4 1	LCOP Dem Carrent None None None	Can Of	Detailake		244	Care		e DetaTree	Ga Pres	1 2 3 4 8	Teneros SAV/A SAU-	00 • 7+ t] 2+ t] 2+	Defatialue 3 2.0000e-3 300.00e-4	Defative. C

1) Control Task Parameter

Constant potential, current, C-rate, power, load, OCP

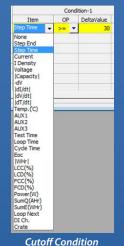
- Sweep potential, current
- Fast sweep potential, current
- Staircase potential, current
- CC-CV, CP-CV, CL-CV, Crate-CV control
- Id, Is control
- EIS control
- Pulse or sinewave control
- Rest(voltage monitoring only)
- Loop(cycle) control

2) Cut-off(Vertex) condition

- Time(step, test, loop, cycle)
- Current, current density
- Voltage
- Capacity
- C-rate
- •-dV
- dV/dt
- dl/dt
- Eoc
- etc.

3) Sampling Condition

• time, |dI/dt|, |dV/dt|, |dA1/dt|, burst time


4) Flow View

This displays sequence flow at a glance.

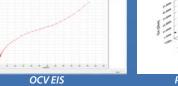
Batch Function

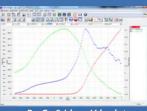
User can design batch file including multiple technique files and/or sequence files. With this batch file, user can experiment several techniques/sequence in series automatically.

Open	Batch Fil	e Sav	(é) 5	Save	8	Aρ	ply t	o Channel Add Insert[Dn] Insert[Up] Delete Co
Index		5	ietting Loop	1		1		Schedule File(s)
PAPER	Enable	Count	Next		Loop End		Chg	File Name
1	Г	1	Next	+	Next	•		C:/Zive Data/sm/schedule/evs1.EV5
2	E	1	Next		Next			Ct/Zive Data/sm/schedule/cccv.CCV
3	Г	1	Next		Next	٠		Cr/Zive Data/sm/schedule/b1.CCV
4	E	1	Next		Next			Ct/Zive Data/sm/schedule/2.7v.IPE
5	Г	1	Next	-	Next	-		C:/Zive Data/m/bchedule/dd.IPE
6	E	1	Next		Next		111	Ci/Zive Data/sm/schedule/4.2/.IPE
7	1	5	Index-1	+	Next	+		C:/Zive Data/m/schedule/cccv1.CCV
8	Г	1	Next	-	Next	+	747	C:/Zive Data/m/schedule/coin.CCV

Advanced Software Packages

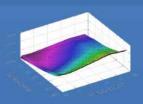
For a wide range of application, following software packages are provided as standard.


EIS Software Package (EISe)


- 1) Potentiostatic EIS
- 2) Galvanostatic EIS
- 3) Pseudo galvanostatic EIS
- 5) Potentiodynamic PEIS 6) Galvanodynamic GEIS
- 7) Potentiodynamic HFR
- 11) Multisine potentiostatic EIS 12) Multisine galvanostatic EIS

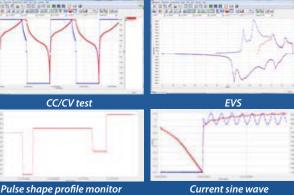
8) Galvanodynamic HFR

- 13) Intermittent potentiostatic EIS
- 14) Intermittent galvanostatic EIS
- wave on this potential.


(*1) The system measures open circuit potential before each frequency change and applies AC sine

Rs, Cp & Idc vs Vdc plot

Potentiodynamic PEIS


Coin Cell Intermittent PEIS 3D Nyquist Plot By ZMAN

(charge ripple simulation)

Energy Software Package (BATe)

BATe software supports IR measurement.

- 1) Battery Test Technique
 - CC/CV test for cycle life test of lithium battery
 - CC/CC test for cycle life test of NiCd & NiMH battery
 - Discharging test
 - EVS (Electrochemical voltage spectroscopy)
 - Variable scan rate CV
 - Potentiostatic IV curve
 - Galvanostatic IV curve
 - Steady state CV
 - GITT
 - PITT
 - Pulse mode is available for GSM & CDMA profile. Pulse shape profile can be measured by user's demand.

(micro sec order)

2) Control Mode

- Charge: CC, CC-CV, pulse, sine wave
- Discharge: CC, CP, CR, pulse, sine wave

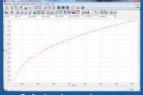
- 3) Cutoff Condition
 - Time, voltage, current, power, auxV etc.

Various battery charge/discharge test is available including pulse discharge for GSM, CDMA application.

Electrochemical Analysis Software Package (EASe)

- 1) Step Techniques

 - CC (Chronocoulometry)
 - CP (Chronopotentiometry)
- 2) Sweep Techniques
 - LSV (Linear Sweep Voltammetry)
 - SDV (Sampled DC Voltammetry)
 - Fast CV
 - Fast LSV
- 3) Pulsed Techniques
 - DPV (Differential Pulse Voltammetry)
 - SWV (Square Wave Voltammetry)
 - DPA (Differential Pulse Amperometry)
 - NPV (Normal Pulsed Voltammetry)
 - RNPV (Reverse Normal Pulse Voltammetry)
 - DNPV (Differential Normal Pulse Voltammetry)



Corrosion Software Package (CORe)

Corrosion technique supports IR compensation. 1) Tafel (Tafel Experiment)

- 2) Rp (Polarization Resistance)
- 3) RpEc Trend
- 4) PDYN (Potentiodynamic)
- 5) CYPOL (Cyclic Polarization Resistance)
- 6) GDYN (Galvanodynamic)
- 7) Reactivation
- 8) Galvanic Corrosion
- 9) Potentiostatic ECN
- 10) Galvanostatic ECN
- 11) ZRA mode ECN

Tafel plot

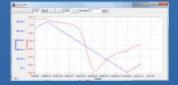
Cyclic polarization resistance

Control & Real Time Graph


Smart Manager Program provides virtual control panel for control & data acquisition with real time graph.

and monitor in this control panel data in VOI (Value Of window and window. Real time graph's X axis changed per technique automatically. It can be

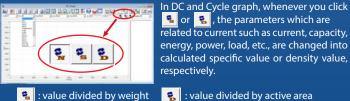
defined by user's demand per technique. For experiment using sequence file or batch file, user can designate X,Y axis parameter on three different real time graph.


Each real time graph format can be also selected. Real time graph and VOI will be changed depending on DC test or impedance test automatically. Virtual control panel always displays the graph for recent test result. For impedance measurement, wave monitor will be displayed on real time graph to check wave's quality. This monitor can be switched to Lissajous (I vs. E) plot.

Single channel control panel

Multichannel real time graph

Strip Chart

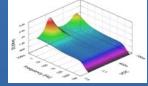

Strip chart recorder function allows you to monitor DC curve in real time. You can monitor 2 Y axis data such as voltage, current, auxV, power, capacity etc. in real time

Smart Manager's graph function is to simplify the operation. There are 3 kinds of graph per each experiment. You can change X, Y1, Y2, Y3, Y4 axis parameter as you want. Each graph provides shortcut buttons. When you click these buttons, the format of the graph will be changed accordingly.



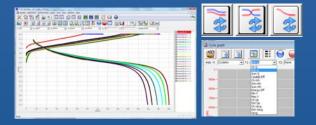
🐁 or 🤹 , the parameters which are

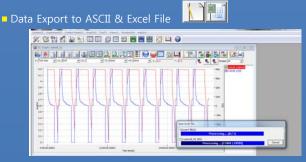
💈 : value divided by weight


- 1) DC Graph
 - For general data display
 - 4 shortcut buttons: I vs. V, E vs. LogI, V, I vs. time, V vs. Q • Graph parameters: Time, Eref, I, Eoc, Id, Aux1, LogI, Load, ChQ, DchQ, ChQs, DchQs, Ch P, Dch P, Ch-Wh, Dch-Wh, Sum Wh, Sum Q, Sum |Q|, |Q|, Rp, dQ/dV

2) EIS Graph

- For EIS data display
- 3 shortcut buttons: Nyquist plot , Bode plot, Cs vs. frequency
- Graph parameters: Frequency, Zre, -Zim, Zmag, Zph, Y', Yimg, Y, |Y|, Yph, LogZ, LogY, Rs(R-C), Cs(R-C), Rp(R|C), Cp(R|C), Rs(R-L), Ls(R-L), Q(R-L), time, Vdc, Idc, Aux1



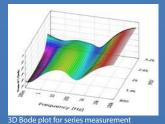

3D Bode Plot by ZMAN

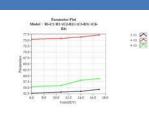
Technique used: Potentiodynamic Impedance Measurement By Using A Corrosion Cell

3) BAT Graph

- For battery cycle data display
- 3 shortcut buttons: cycle capacity, cycle average, Log(cycle No) vs. depth of discharge plot.
- Graph parameters: cycle number, Ch Q, Dch Q, Sum Q, Coulomb Eff, Ch-Wh, Dch-Wh, Sum Wh, Energy Eff, MinV, MaxV, ChQs, DchQ, ChVavg, DchVavg, Vavg

Selectable between 'Convert data on graph only' and 'Convert selected file(s)'

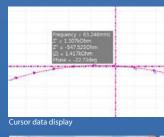

Data Analysis Software

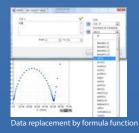

ZIVE data file can be used for analysis by using external IVMAN[™] software for DC analysis, IVMAN DA[™] software for battery data analysis, IVMAN PA[™] software for photo-voltaic cell data analysis and ZMAN[™] software for EIS data analysis without license.

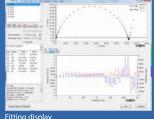
ZMAN[™] EIS Data Analysis Software

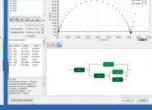
- Model simulation and fitting
- 2D- and 3D-Bode- and Nyquist plots
- Automatic equivalent circuit model search function
- Project concept to handle multiple EIS data analysis
- Parameter plot from fitted elements value
- Compatible with data format from Zahner, Gamry, Ametek etc. (License code is needed.)
- Various weighting algorithm
- Model library and user model
- KK plot
- Batch fitting for project data
- Impedance parameter simulation
- Interpolate bad data
- Black-Nichols plot
- 3D graph setting option
- Improved model editor
- Application model library for automatic searching
- Parameter simulation of model
- Genetic algorithm option for initial guessing
- Automatic initial guessingTrace movie function on fitting
- Free for ZIVE's data format(*.seo, *.wis) analysis (No license code required.)
- Circle fitting
- Data editing available (insert, delete, edit)
- Add/subtract element parameters
- Add/subtract model parameters
- Impedance, Z in polar, admittance, Y in Polar, modulus, M in polar, dielectric constant, E in polar. data display
- Empty cell capacitance calculation
- Find file function
- Data replacement by formula function
- Cursor data display
- Model finding result automatic sorting by Chi square value
- R, C R, L R, Q preview & graphic
- ZHIT function
- Mott-Schottky analysis
- Donor density vs. Vfb graph
- C vs. voltage graph

WonATech ZMAN[™] 2.2

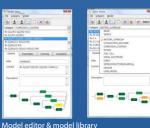


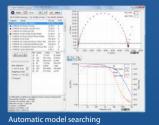

 No.
 B
 Lines
 B
 Lines
 Composition
 Comp

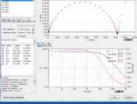



Project manager with data preview

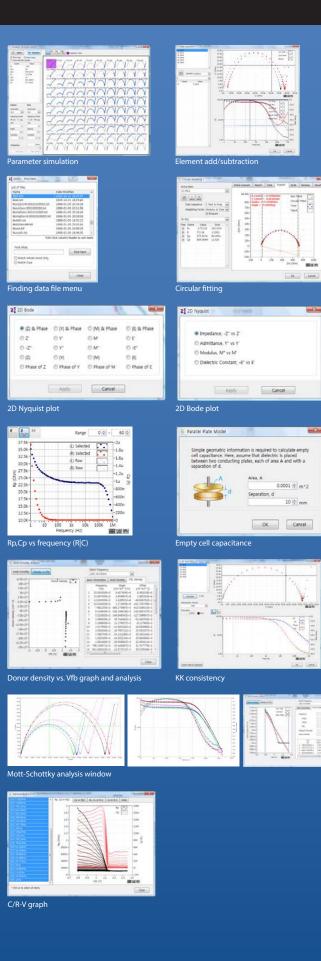
Parameter plot





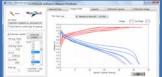


Fitting display

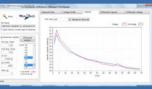


LEVM fitting

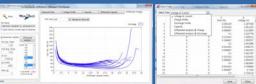
IVMAN[™] DC Data Analysis Software


IVMAN[™] software package consists of • IVMAN software

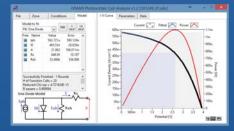
- IVMAN utilities
- IVMAN differential analysis software
- IVMAN photo voltaic cell analysis.
- IVMAN Tafel analysisIVMAN extractor
- IVMAN peak find module


IV **IVMAN DA[™] Battery Test Data Analysis Software**

- Battery test data analysis
- Electrochemical voltage spectroscopy (dQ/dV vs. V)
- Voltage vs. Capacity analysis (V vs. Q)
- Cycle graph (Q vs. cycle)Differential voltage graph(dV/dQ vs. Q)

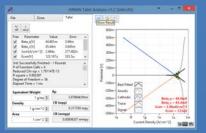


Measured data

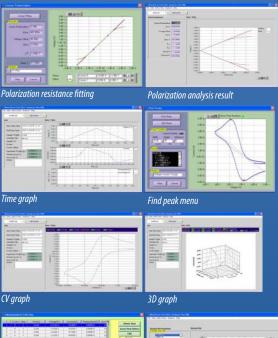

dV/dQ vs. Q

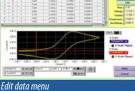
Export ASCII file

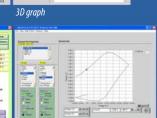
dQ/dV vs. V


₩IVMAN[™] Photovoltaic Cell Analysis

- Automatic analysis of parameters
- open circuit voltage, open circuit current, max. power, efficiency photo induced current, diode quality factor, series resistance, etc.

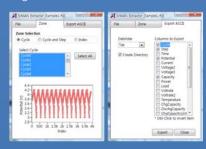

• Simple Tafel calculation



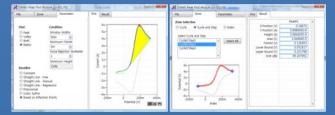


™ IVMAN™ Main Software

- Ideal for DC corrosion data analysis and electro-analytical data analysis
- Initial guessing function on Tafel analysis Polarization resistance fitting
- 3D graph
- Find peak function
- Interpolation, differentiation, integration etc.
- Reporting function



Universal graph


IVMAN EX™ Extractor

- Extracting data by cycle number or step
- Exporting ASCII file

IVMAN PF[™] Peak Find Module

• Independent peak finding software

Optional Accessories

- Power Booster
 - for high voltage/high current application
 - modular type design
 - EIS capability
 - sine wave simulation available

- Battery Jig & Coin Cell Jig - for cylindrical cell or coin cell
- 4 probe type

- Pouch Cell Jig
- contact type
- a) pull-down contact type with
- adjustable contact probe's width b) banana connector for cell cable connection
- 4 contact point type(Kelvin probe)

- Coin Cell Holder
- D-SUB connector type

- Battery Test Cell
 - test cell for 2 or 3 electrode measurement
 - test cell for aqueous electrolyte
 - test cell for pressure monitoring

 - test cell for gas diffusion electrodetest cell for time-resolved gas analysis
 - test cell for optical and X-ray characterization in the reflective mode
 - test cell for high-throughput testing, etc.

ECC-Ref

ECC-Press

PAT -Single Stand

- Electrochemical Dilatometer
 - for the measurement of height changes in aprotic as well as aqueous electrolytes
 - ECD-3 : displacement resolution ≤50nm
 - ECD-3-nano : displacement resolution ≤5nm

- Through-Plane Conductivity Test Jig - for through plane conductivity
 - 2 probe type

- Membrane Conductivity Cell hardware fixture - material : PEEK(cell body),
- operating temp. : up to 130°C

• Single Cell Hardware Fixture

- fro PEMFC and DMFC - max. temp. : 120°C or 180°C

• Universal Electrode Holder - electrode and glass vial are not included.

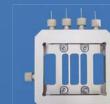

• Cell Kit

Plate Test Cell

H-Type Cell

• Faraday Cage - size : 300 x 300 x 398mm (WxDxH)

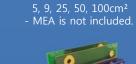

Flat Cell Kit

Plate Test Cell

H-Type Cell

- active area :

Specification

Main System	
PC communication	USB2.0 high speed
Line voltage	100~240VAC, 50/60Hz, 1Amp
Power adapter	24V 2.5Amp
Size/weight	160x330x81mm(WxDxH) / 2.05Kg
Max. output power	15Watt

System	
Cell cable	1 meter shielded type(standard)
	working, reference, counter,
	working sense, Auxiliary V
Control	DSP with FPGA
DAC	2x16bit DAC(50MHz) for bias & scan
Data acquisition	2x16bit ADCs(500kHz) for voltage, current
ADC	1x16bit ADCs(250kHz) for auxiliary reading
Calibration	Automatic
Filter selection	4ea(5Hz, 1kHz, 500kHz, 5MHz)
Scan rate	0~200V/sec in common mode
	0~5000V/sec in fast mode
Max. channel No.	8 channels via USB connection
Internal data memory	295,000 points

Power Amplifier(CE)			
Power	12Watt (12V@1A)		
Compliance voltage	±12V		
Max. current	±1A		
Control speed selection	4ea		
Bandwidth	2MHz		
Slew rate	10V/usec		

Potentiostat Mode (voltage control)		
Voltage control		
Control voltage range	±10V, ±1V, ±100mV	
Voltage resolution	16 bit per each range	
Voltage accuracy	±1mV ±0.05% of setting(gain x1)	
Max. scan range	±10V vs. ref. E	
Current measurement		
Current range	10 ranges(auto/manual setting)	
	100nA ~ 1A	
	1nA & 10nA with gain	
Current resolution	16 bit	
	30uA,3uA,300nA,30nA,3nA,300pA,30pA,3pA	
	(300fA, 30fA with gain)	
Current accuracy	±10pA ±0.1% f.s.(gain x1)>100nA	

Galvanostat Mode (current control)		
Current control		
Control current range	max. ±1A ± full scale depending on selected range	
Current resolution	16 bit 30uA,3uA,300nA,30nA,3nA,300pA,30pA,3pA (300fA, 30fA with gain)	
Current accuracy	±10pA ±0.1% f.s.(gain x1)>100nA f.s.	
Voltage measurement		
Voltage range	10V, 1V, 100mV	
Voltage resolution	16 bit 0.3mV, 30uV, 3uV	
Voltage accuracy	±1mV ±0.05% of reading(gain x1)	

Electrometer	
Max. input voltage	±10V
Input impedance	2x10 ¹³ Ω 4.5pF
Bandwidth	>22MHz
CMRR	>114dB

EIS(Internal FRA) for System

<u> </u>	
Frequency range	10uHz~1MHz
Frequency accuracy	0.01%
Frequency resolution	5000/decade
Amplitude	0.1mV~5V rms (Potentiostatic)
	0.1~70% f.s. (Galvanostatic)
Mode	Static EIS:
	Potentiostatic, Galvanostatic,
	Pseudogalvanostatic, OCP
	Dynamic EIS:
	Potentiodynamic, Galvanodynamic
	Fixed frequency impedance:
	Potentiostatic, Galvanostatic,
	Potentiodynamic, Galvanodynamic
	Multisine EIS:
	Potentiostatic, Galvanostatic
	Intermittent PEIS/GEIS

Interfaces for System

Auxiliary port	
Auxiliary voltage input	1 analog input: ±10V
Zero resistance ammeter	100nA~1A ranges
External booster interface	Via booster I/F cable
Sync terminal	For channel synchronizing

Smart LCD Display	
DC mode	Control value, E value, I value
	E range, I range
EIS mode	Frequency, Magnitude, Phase
	E range, I range
Operation status	Mode: PST, GST, ZRA, EIS, CC,CV,CP,CR
	Status: Cell On, Run, Error

Software	
Max. step per experiment	1000
Shutdown safety limits	Voltage, current, power, AuxV etc.
Max. sampling rate	20kHz(50usec) in burst mode
-	500kHz(2usec) in fast sweep mode
Min. sampling time	Unlimited
Sampling condition	Time, dv/dt, dI/dt, etc.

WindowsXP SP3/7/8/10(32bit/64bit OS)
Pentium4, RAM 1GB or higher
1600x900 high color or higher
High speed 2.0

General	
Dummy cell	One external dummy cell included
Impedance analysis S/W	ZMAN [™] software
DC data analysis S/W	IVMAN™ software package
The specifications are subject to change without notice	

Windows is a registered trade mark of Microsoft Corporation.

Designing the Solution for Electrochemistry

WonATech Co., Ltd. 7, Neunganmal 1-gil, Seocho-gu, Seoul, 06801, Korea Phone: +82-2-578-6516 Fax: +82-576-2635 e-mail) sales@wonatech.com website: www.wonatech.com

Local Distributor eDAQ Pty Itd 6 Doig Avenue Denistone East NSW 2112 Australia +61 2 98078855 e-mail info@edaq.com web www.edaq.com

ISO 9000 & ISO 14000 Qualified

