

Galvanic Oxygen Electrode

ET1115 Galvanic Oxygen Electrode

For general purpose oxygen concentration measurement in aqueous solution. The electrode is comprised of a platinum cathode and lead anode, connected via an internal 7.5 k Ω resistor. The output in air saturated deionized water is normally between 20 and 35 mV at 25 °C.

The electrode can be connected directly to a BNC input of an $\ensuremath{\textbf{e}}\xspace$ unit.

ET1115 Galvanic Oxygen Electrode

Electrode type:	Galvanic	LII
Cathode:	Platinum	
Anode:	Lead	
Membrane:	PTFE (Teflon®)	
Output:	<1 mV in deoxygenated water	
Response time:	<30 s to 90% of final value	
DC drift:	<2% per week at constant pressure and temperature	
Oxygen consumption (STP):	$3.45 imes 10^{-13} ext{ mol } O_2/ ext{s per mV of signal}$	
	1.10×10^{-11} g O ₂ /s per mV of signal	
Filling solution:	2% NaOH, 65% ethylene glycol, 33% water	
Electrode body:	Plastic (Delrin)	
Connector:	BNC	
Dimensions:	12 mm OD \times 137 mm (0.47" OD \times 5.4")	
Cable length:	3 m (10 ft)	

www.eDAQ.com