Cyclic Voltammetry: Hints and Tips

From eDAQ Wiki
Revision as of 14:03, 22 March 2013 by PaulDuckworth (Talk | contribs)

Jump to: navigation, search

Safety

Purification and distillation of solvents should only be undertaken by an experienced chemist or laboratory technician. Incorrect procedures could lead to explosion or fire.

All organic solvents, to a lesser or greater degree, are toxic, and most are flammable. General safety procedures include working in a well ventilated area (a fume hood is usually necessary), with protective clothing including rubber gloves and safety glasses. Adequate ventilation must be ensured about the distillation apparatus to prevent the buildup of flammable and toxic solvent vapours.

Even if the solvent is relatively harmless, most organic solvents can penetrate the skin easily carrying potentially toxic solutes with them. Similarly most electrolytes used with organic solvents are toxic and/or skin irritants. Always familiarize yourself with the potential hazards by reading the MSDS (Materials Safety Data Sheets) available from the suppliers of solvents and electrolytes. Always assume that new compounds (for which no safety data may be available) are toxic and handle them with due care.

Only use the drying agent indicated for that particular solvent. Do NOT mix drying agents.

Solvents may be grossly wet and require predrying before drying with highly reactive drying agents such as sodium wire or phosphorous pentoxide. Appropriate care should be exercised in the handling and disposal of reactive drying agents such as metal hydrides, phosphorous pentoxide, and sodium wire

The constituent ions (both cations and anions) of electrolytes may be toxic and when dissolved in organic solvents they can be carried across the skin. In cases of accidental spillage, where a specific treatment is unknown, contaminated skin areas should be continuously flushed with water for at least several minutes.

Solvents

Water

Water is obviously a low toxicity, non-flammable solvent capable of dissolving many ionic and polar compounds. It also has the advantage of being a moderately good electrical conductor especially when used with an inert electrolyte added (often 0.1 mol/L KCl).

Organic Solvents

For guidelines on the purification of many solvents see “Purification of Laboratory Chemicals”, 4th edition, W. L. F. Armarego and D. D. Perrin, Butterworth-Heinemann, 1997, ISBN 0750637617.

Solvents should be of at least AR (analytical reagent) grade otherwise they may be grossly wet, or otherwise need a preliminary purification. Further drying and purification is then usually necessary before the solvent can be used for cyclic voltammetry or other electroanalytical techniques.

Distillation of solvents should always take place using a short fractionating column filled with glass rings to prevent an aerosol of the boiling solvent being carried through the condensor. A dedicated still for each solvent is ideal.

Ethers (including tetrahydrofuran, diethyl ether, 1,4-dioxan, and 1,2-dimethoxyethane), as well as aromatic hydrocarbons (benzene, toluene, xylenes) can be first dried over sodium wire then distilled from freshly drawn sodium wire with a little benzophenone added to the distillation pot. A dark blue or purple color should develop and persist during reflux, for at least 10 minutes, which signals the presence of sodium benzophenone ketyl (a radical anion). The ketyl can only exist in the absence of water and oxygen. The anhydrous solvent can then be distilled. Excess sodium wire is destroyed by allowing the distillation pot to cool and cautiously adding absolute ethanol.

Dichloromethane, 1,2-dichloroethane, cyclohexane, or hexane, can be dried by distillation from either P2O5, or from calcium hydride, CaH2.

Pre-dry acetonitrile with a molecular sieve, pore size less than 4 Å. Distil after reflux with a small amount of phosphorus pentoxide, P2O5, (about 0.5% w/v) to remove the residual water. Avoid using too much P2O5 to prevent excessive formation of an orange polymeric material.

Dimethyl sulfoxide or dimethylformamide should be predried using a molecular sieve with a pore size of not greater than 4 Å, followed by distillation at reduced pressure (10 – 20 mmHg).

Supercritical Fluids

Supercritical fluids have been used as solvents for cyclic voltammetry. For an example see ‘Electrochemical investigations in liquid and supercritical 1,1,1,2-tetrafluoroethane (HFC 134a) and difluoromethane (HFC 32)’, Andrew P. Abbott, Christopher A. Eardley, John C. Harper, and Eric G. Hope, Journal of Electroanalytical Chemistry, 457, 1–4, 1998. In particular HFC 134a, with tetra-n-butyl ammonium tetrafluoroborate as electrolyte, was shown to be have an extraordinarily wide redox stability window of 9 V.

Liquid Electrolytes

The use of electrolytes that are liquid at ambient temperatures, often referred to as ionic liquids, has become more common in recent years, especially for use in battery technology. These materials can also be used as solvents for cyclic and other voltammetric techniques.