Difference between revisions of "How to Choose a Potentiostat"

From eDAQ Wiki
Jump to: navigation, search
Line 109: Line 109:
 
* Sensors: suitable for use with amperometric sensors
 
* Sensors: suitable for use with amperometric sensors
 
||
 
||
Example
+
* Cyclic voltammetry: compound characterization
 +
* Electrolysis: small scale electrosynthesis or electropolymerisation
 +
* Analytical chemistry, research or teaching
 +
* Kinetics: pulse chronoamperometric techniques
 +
* Sensors: suitable for use with amperometric sensors
 
||
 
||
 
* for use with carbon fiber and ultramicroelectrodes
 
* for use with carbon fiber and ultramicroelectrodes
Line 129: Line 133:
 
* battery and fuel cell characterization and performance
 
* battery and fuel cell characterization and performance
 
* biocompatible surfaces
 
* biocompatible surfaces
|-
 
| Example || Example || Example || Example || Example || Example
 
|-
 
| Example || Example || Example || Example || Example || Example
 
|-
 
| Example || Example || Example || Example || Example || Example
 
 
|-
 
|-
 
| Example || Example || Example || Example || Example || Example
 
| Example || Example || Example || Example || Example || Example
 
|}
 
|}

Revision as of 18:16, 9 May 2013

Name EChem Startup System EChem Startup System with Fast Potentiostat Dual Picostat System QuadStat EChem System bundle Advanced Electrochemistry System
Product Code ER461 ER461b ER461p ER864 ERZ101
Includes Products
  • ER466
  • ET014
  • ES260
  • ES500
  • EA163
  • ED410
  • ET014
  • ES260
  • ES500
  • EA362
  • ED410
  • ET014
  • ES260
  • ES500
  • EA164
  • ED821
  • ER175
  • ES500
  • ERZ100
  • EA163
  • ED410
  • ET014
  • ES260
  • ES500
Number of Channels 1 1 2 (bipotentiostat) 4 (quadpotentiostat) 1
Modes
  • Potentiostat
  • Galvanostat
  • ZRA
  • High Z
  • Potentiostat
  • Galvanostat
  • ZRA
  • High Z
  • Potentiostat
  • ZRA
  • Potentiostat
  • ZRA
  • Potentiostat
  • Galvanostat
  • ZRA
  • High Z
Current Ranges

±100, 50, 20, 10, 5, 2, 1 mA ±500, 200, 100, 50, 20, 10, 5, 2, 1 µA ±500, 200, 100, 50, 20 nA

±100, 50, 20, 10, 5, 2, 1 mA ±500, 200, 100, 50, 20, 10, 5, 2, 1 µA ±500, 200, 100, 50, 20 nA

±10, 5, 2, 1 µA ±500, 200, 100, 50, 20, 10, 5, 2, 1 nA ±500, 200, 100, 50, 20, 10, 5, 2, 1 pA

±1 mA* ±500, 200, 100, 50, 20, 10, 5, 2, 1 µA* ±500, 200, 100, 50, 20, 10, 5, 2, 1 nA* ±500, 200 pA*

  • x10 for high current model

±100, 50, 20, 10, 5, 2, 1 mA ±500, 200, 100, 50, 20, 10, 5, 2, 1 µA ±500, 200, 100, 50, 20 nA

Electrochemistry Techniques

CV, LSV, DPV, SWV, NPV, RPV, LSSV, DPSV, SWSV, NPSV, MPV,DPA, CPE, DNPV, DPV Chronoamperometry, chronocoulometry, chronopotentiometry, CPE, CCE, electrosynthesis, RDE*, QCM*

CV, LSV, DPV, SWV, NPV, RPV, LSSV, DPSV, SWSV, NPSV, MPV,DPA, CPE, DNPV, DPV Chronoamperometry, chronocoulometry, chronopotentiometry, CPE, CCE, electrosynthesis, RDE*, QCM*

CV, LSV, DPV, SWV, NPV, RPV, LSSV, DPSV, SWSV, NPSV, MPV,DPA, CPE, DNPV, DPV Chronoamperometry, chronocoulometry, chronopotentiometry, CPE, CCE, electrosynthesis, RDE*, QCM*

Chronoamperometry, chronocoulometry, chronopotentiometry, CPE, CCE, electrosynthesis, RDE*, QCM*

EIS Electrochemical Impedance Spectroscopy (potentiostatic and galvanostatic) CV, LSV, DPV, SWV, NPV, RPV, LSSV, DPSV, SWSV, NPSV, MPV,DPA, CPE, DNPV, DPV Chronoamperometry, chronocoulometry, chronopotentiometry, CPE, CCE, electrosynthesis, RDE*, QCM*

Typical Applications
  • Cyclic voltammetry: compound characterization
  • Electrolysis: small scale electrosynthesis or electropolymerisation
  • Analytical chemistry, research or teaching
  • Kinetics: pulse chronoamperometric techniques
  • Sensors: suitable for use with amperometric sensors
  • Cyclic voltammetry: compound characterization
  • Electrolysis: small scale electrosynthesis or electropolymerisation
  • Analytical chemistry, research or teaching
  • Kinetics: pulse chronoamperometric techniques
  • Sensors: suitable for use with amperometric sensors
  • for use with carbon fiber and ultramicroelectrodes
  • in vivo monitoring of dopamine
  • studies of ionic transport across membranes or immiscible interfaces
  • Monitor dissolved oxygen, nitric oxide, hydrogen peroxide or hydrogen sulfide
  • Simultaneous monitoring of sensors in multiple reaction vessels
  • Bipotentiostat operation: two, three or four working electrodes with common auxiliary and reference electrode
  • Sensors: use with amperometric sensors providing current signals down to the picoampere ranges
  • Neurochemistry: in vivo amperometry for neurotransmitter monitoring
  • surface corrosion
  • membrane structure and permeability
  • self-assembled monolayers (SAMs)
  • Biosensors
  • epitaxial layers
  • interfacial ion transport
  • battery and fuel cell characterization and performance
  • biocompatible surfaces
Example Example Example Example Example Example