EA362  Dual PicoStat

EA362 Dual PicoStat
EA362 Dual PicoStat
  • High sensitivity 2 channel potentiostat
  • Bipotentiostat and 4-electrode modes of operation


The Dual PicoStat is a two channel high sensitivity potentiostat suitable for use with carbon fiber and ultramicroelectrodes for the monitoring of low current signals (down to picoameperes). It is commonly used for in vivo monitoring of dopamine by amperometry.

There are two potentiostat channels which enable the unit to also be used as a bipotentiostat (two working electrodes with a common reference and auxiliary electrode) so that dopamine levels can be monitored at two separate locations. Alternatively it can be used to perform duplicate experiments with separate samples, each with a working, reference and auxiliary electrode.

It can also be used as a 4-electrode voltage clamp (with two current passing and two voltage sensing reference electrodes) for studies of ionic transport across membranes or immiscible interfaces.

The Dual PicoStat is electrically isolated and is resistant to interference from neural stimulators, and ground loops. It is DC powered and can be used inside Faraday cages if required.

The Dual PicoStat must be used in conjunction with an e-corder unit. The e-corder 410 is recommended.

NOTE: This unit has recently superseded the EA162 PicoStat some citations of which are reported in the Applications tab.

Research Areas

Application Notes


  • Analysis of Nitric Oxide from Chemical Donors Using CMOS Platinum Microelectrodes.  Rachel M. Feeny, John B. Wydallis, Tom Chen, Stuart Tobet, Melissa M. Reynolds, and Charles S. Henry, Electroanalysis, 27, 1104 – 1109, 2015.  doi: 10.1002/elan.201400510
  • Electrochemical DNA-biosensors: Two-electrode setup well adapted for miniaturized devices.  M. Lazergesa, V.T. Tala, P. Bigeya, D. Schermana, F. Bediouia, Sensors and Actuators B: Chemical, 182, 510–513, 2013.  doi:10.1016/j.snb.2013.02.098
  • Chromobacterium Violaceum for Rapid Measurement of Biochemical Oxygen Demand.  B.H. Khor, A.K. Ismail, R. Ahamad, S. Shahir, Jurnal Teknologi, 69, 9-15, 2014.  DOI:10.11113/jt.v69.2265
  • Sensitivity enhancement of a “bananatrode” biosensor for dopamine based on SECM studies inside its reaction layer.  Zsuzsanna ┼Éri, András Kiss, Anton Alexandru Ciucu, Constantin Mihailciuc, Cristian Dragos Stefanescu, Livia Nagy, Géza Nagy, Sensors and Actuators B: Chemical, 190, 149–156, 2014.  doi:10.1016/j.snb.2013.08.063
  • Electrochemical Devices for Monitoring Biomarkers in Embryo Development.  Maria Gómez-Mingot, Sophie Griveau, Fethi Bedioui, Craig E. Banks, Vicente Montiela, Jesús Iniesta,  Electrochimica Acta, 140, 42–48, 2014.   doi:10.1016/j.electacta.2014.03.012
  • Reorganization of Circuits Underlying Cerebellar Modulation of Prefrontal Cortical Dopamine in Mouse Models of Autism Spectrum Disorder
    Tiffany D. Rogers, Price E. Dickson, Eric McKimm, Detlef H. Heck, Dan Goldowitz, Charles D. Blaha, and Guy Mittleman.  The Cerebellum, 2013.    DOI:10.1007/s12311-013-0462-2
  • Influence of Gold Nanoparticle Film Porosity on the Chemiresistive Sensing Performance.   Edith Chow, Burkhard Raguse, Karl-H. Müller, Lech Wieczorek, Avi Bendavid, James S. Cooper, Lee J. Hubble and Melissa S. Webster
    Electroanalysis, 25, 2313–2320, 2013.   DOI: 10.1002/elan.201300303
  • Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Yixian Wang, Jean-Marc Noël, Jeyavel Velmurugan, Wojciech Nogala, Michael V. Mirkin, Cong Lu, Manon Guille Collignon, Frédéric Lemaître, and Christian Amatore.  PNAS, 109, 115434-11539, 2012.
  • Indium Tin Oxide devices for amperometric detection of vesicular release by single cells.  Anne Meunier, Rémy Fulcrand, François Darchen, Manon Guille Collignon, Frédéric Lemaître, Christian Amatore.   Biophysical Chemistry, 162, 14–21, 2012.
  • Dopamine dynamics associated with, and resulting from, schedule-induced alcohol self-administration: analyses in dopamine transporter knockout mice.   Guy Mittleman, Stanford B. Call, Jody L. Cockroft, Dan Goldowitz, Douglas B. Matthews, and Charles D. Blaha. Alcohol, 45, 325-339, 2011.
  • Genotype-dependent effects of adolescent nicotine exposure on dopamine functional dynamics in the nucleus accumbens shell in male and female mice: a potential mechanism underlying the gateway effect of nicotine.   Price E. Dickson, Tiffany D. Rogers, Deranda B. Lester, Mellessa M. Miller, Shannon G. Matta, Elissa J. Chesler, Dan Goldowitz, Charles D. Blaha and Guy Mittleman. Psychopharmacology,  215, 631-642, 2011.
  • Prussian Blue-modified microelectrodes for selective transduction in enzyme-based amperometric microbiosensors for in vivo neurochemical monitoring.   P. Salazara, M. Martín, R. Roche, R.D. O’Neill, and J.L. González-Mora, Electrochimica Acta, 55, 6476–6484, 2010.
  • Diffusion-limited chronoamperometry at conical-tip microelectrodes.   Dieter Britz, Shaneel Chandra, Jörg Strutwolf, and Danny K.Y. Wong. Electrochimica Acta, 55, 1272-1277, 2010.
  • Midbrain acetylcholine and glutamate receptors modulate accumbal dopamine release.   Deranda B. Lester, Anthony D.Miller, Tiffany D. Pate and Charles D. Blaha. NeuroReport, 19, 991-995, 2008.
  • In Vivo Electrochemical Detection of Nitric Oxide in Tumor-Bearing Mice.   Sophie Griveau, Charlotte Dumezy, Johanne Seguin, Guy G. Chabot, Daniel Scherman, and Fethi Bedioui. Analytical Chemistry, 79, 1030-1033, 2007.
  • Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease.   Kendall H. Lee, Charles D. Blaha, Brent T. Harris, Shannon Cooper, Frederick L. Hitti, James C. Leiter, David W. Roberts and Uhnoh Kim. European Journal of Neuroscience, 23, 1005–1014, 2006.

  • Range settings (and theoretical resolution): 
           10 µA   (313 pA)                    5 µA   (156 pA)                2 µA   (62.5 pA)
           1 µA   (31.3 pA)                     500 nA (15.6 pA)             200 nA (6.25 pA)
           100 nA   (3.13 pA)                 50 nA  (1.56 pA)              20 nA   (625 fA)
           10 nA  (313 fA)                      50 nA  (156 fA)                2 nA   (62.5 fA)
           1 nA  (31.3 fA)                       5 nA  (15.6 fA)                1 nA   (6.25 fA)

           100 pA   (3.13 fA)                   50 pA  (1.56 fA)              20 pA   (625 aA)
           10 pA   (313 aA)                     5 pA  (156 aA)                2 pA   (62.5 aA)
           1 pA   (31.3 aA)
  • Input resistance: 1013 ohm
  • Bandwidth: 16kHz at100nA and above; 1.6kHz at 10nA and below.
  • Applied potential: ±2.5 V maximum
  • Compliance:  13 V
  • Isolation: 250 Vrms


© copyright 2002 - 2024   eDAQ - data recording made simple
       website by frogwebworks
© copyright 2002 - 2024   eDAQ - data recording made simple
website by frogwebworks
© copyright 2002 - 2024 eDAQ - data recording made simple website by frogwebworks
© copyright 2002 - 2024 eDAQ - data recording made simple
website by frogwebworks