ER466 Integrated Potentiostat System
- Ideal for cyclic voltammetry, linear sweep and pulse techniques
- Potentiostat, galvanostat, ammeter and voltmeter modes
- Maximum 100 mA and ±10 V
- Expandable using isoPod amplifiers
- High accuracy
- Windows 7, 8 and 10 compatible
The ER466 Integrated Potentiostat System is our most popular potentiostat model, being ideal for cyclic, linear sweep, and most analytical pulse voltammetric experiments, either in the research or teaching laboratory. It also functions as a galvanostat, ZRA (zero resistance ammeter), and high impedance voltmeter (electrometer). Connection to a computer is via a USB cable.
A full list of electrochemistry techniques availabe can be seen here.
The Integrated Potentiostat is normally sold as part of the EChem Startup System, which includes the software (EChem, Chart and Scope) and the electrode kit. It can also be purchased as:
- ER466E: Integrated Potentiostat with EChem software for voltammetric techniques.
- ER466C: Integrated Potentiostat with Chart and Scope software for constant potential and constant current experiments.
- ER466CE: Integrated Potentiostat with EChem, Chart and Scope software.
Two additional, general purpose, input channels are available that can be used for recording signals from other devices (temperature, pressure, quartz crystal microbalance, light intensity etc) along with the current and potential signals of the potentiostat, all within a compact footprint to save bench space.
Current signal sensitivity ranges from sub nanoamp up to 100 mA which support a wide range of applications.
Voltage-clamp type experiments can be performed on tethered membrane systems with a tethaPatch for studies of ion channels using Scope and Chart software.
- membranes (4-electrode voltage clamp), or
- the interface between two immiscible electrolyte solutions (ITES).
Research Areas
Application Notes
- Plotting the IV Curve of a Solar Cell in EChem Software
- Analysis of Antioxidants using Cyclic Voltammetry
- Software for Electrochemistry Techniques
- Cleaning and Polishing Voltammetric Electrodes
- Cyclic Voltammetry: Hints and Tips
- How to Choose a Potentiostat
Teaching Notes
- EXP001 Anodic Stripping Voltammetry
- EXP002 Cyclic Voltammetry of Ferrocene Carboxylic Acid
- EXP004a Measurement of Iron Corrosion Exchange Current
Citations
- Zinc bromide in aqueous solutions of ionic liquid bromide salts: the interplay between complexation and electrochemistry. Max E. Easton, Peter Turner, Anthony F. Masters, and Thomas Maschmeyer, RSC Advances, 5, 83674-83681, 2015. DOI: 10.1039/C5RA15736F
- The role of amine derivatives in the formation of hierarchical Pt micro/nanostructures. M.D. Johan Ooia, and A. Abdul Aziz, Materials Chemistry and Physics, in press 2015, DOI: 10.1016/j.matchemphys.2015.10.028
- Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors. Ashish Aphale, Krushangi Maisuria, Manoj K. Mahapatra, Angela Santiago, Prabhakar Singh, and Prabir Patra, Scientific Reports, 5:14445, 2015. DOI: 10.1038/srep14445
-
Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes
Baris Yilmaz 1, Josiah Bjorgaard1, Zhenghuan Lin1 and Muhammet E. Köse, Organic Communications, 8, 78-89, 2015. - Synthesis and Potency Study of Some Dibutyltin(IV) Dinitrobenzoate Compounds as Corrosion Inhibitor for Mild Steel HRP in DMSO-HCl Solution. Sutopo Hadi, Hapin Afriyani, Wynda D. Anggraini, Hardoko I. Qudus and Tati Suhartati, Asian Journal of Chemistry, 27, 1509-1512, 2015. DOI: 10.14233/ajchem.2015.18590
- Improved Performance for Inverted Organic Photovoltaics via Spacer between Benzodithiophene and Benzothiazole in Polymers. Lal Mohammad, Qiliang Chen, Abu Mitul, Jianyuan Sun, Devendra Khatiwada, Bjorn Vaagensmith, Cheng Zhang, Jing Li, and Qiquan Qiao, Journal of Physical Chemistry C, 119, 18992–19000, 2015. DOI: 10.1021/acs.jpcc.5b05608
- Simultaneous Enantiospecific Recognition of Several β-Blocker Enantiomers Using Molecularly Imprinted Polymer-Based Electrochemical Sensor. Bogdan-Cezar Iacob, Ede Bodoki, Adrian Florea, Andreea Elena Bodok, Radu Oprean, Analytical Chemistry, 87, 2755–2763, 2015. DOI: 10.1021/ac504036m
- Nanoscale Ion Sequestration to Determine the Polarity Selectivity of Ion Conductance in Carriers and Channels. Charles G. Cranfield, Taren Bettler, and Bruce Cornell, Langmuir, 31, 292–298, 2015. DOI: 10.1021/la504057z
- Synthesis and Electrochemical Analysis of Algae Cellulose-Polypyrrole-Graphene Nanocomposite for Supercapacitor Electrode. Ashish Aphale, Aheli Chattopadhyay, Kapil Mahakalakar, and Prabir Patra, Journal of Nanoscience and Nanotechnology, 15, 1–5, 2015. DOI:10.1166/jnn.2015.10280
- Phthalimide containing donor-acceptor polymers for effective dispersion of single-walled carbon nanotubes. Baris Yilmaz, Josiah Bjorgaard, Zhenghuan Lin, and Muhammet E. Köse, Organic Communications, 8, 78-89, 2015. Link.
- Synthesis and Characterization of Pt Nanowires Electrodeposited into the Cylindrical Pores of Polycarbonate Membranes. N. Naderi, M.R. Hashim, J. Rouhi. International Journal of Electrochemical Science, 7, 8481-8486, 2012.
- Enhanced optical performance of electrochemically etched porous silicon carbide. N. Naderi, M.R. Hashim, K.M.A. Saron and J. Rouhi. Semiconductor Science and Technology, 2, 28, 025011, 2013. DOI: 10.1088/0268-1242/28/2/025011
- Non-symmetric 9,10-diphenylanthracene-based deep-blue emitters with enhanced charge transport properties. Tomas Serevičius, Regimantas Komskis, Povilas Adomėnas, Ona Adomėnienė, Vygintas Jankauskas, Alytis Gruodis, Karolis Kazlauskasa, and Saulius Juršėnasa. Physical Chemistry Chemical Physics, 16, 7089-7101, 2014. DOI: 10.1039/C4CP00236A
- Transient Potential Gradients and Impedance Measures of Tethered Bilayer Lipid Membranes: Pore-Forming Peptide Insertion and the Effect of Electroporation. Charles G. Cranfield, Bruce A. Cornell, Stephan L. Grage, Paul Duckworth, Sonia Carne, Anne S. Ulrich, Boris Martinac. Biophysical Journal 106, 182–189, 2014. DOI: 10.1016/j.bpj.2013.11.1121
- Experimental and computational studies of 4H-cyclopenta[2,1-b:3,4-b′]dithiophen-4-one (CPDTO)-oligomers. Cheng Zhanga, Jianyuan Suna, Qiquan Qiaob, Jing Lic, Polymer, 55, 4677–4683, 2014. DOI: 10.1016/j.polymer.2014.07.023
Photos[ click on the thumbnails below to view large images ]
Videos
View more related videos on the Screencast Training Videos Wiki
-
Current ranges (and resolution):
100 mA (3.13 µA) 50 mA (1.56 µA) 20 mA (625 nA)
10 mA (313 nA) 5 mA (156 nA) 2 mA (62.5 nA)
1 mA (31.3 nA) 500 nA (15.6 nA) 200 µA (6.25 nA)
100 µA (3.13 nA) 50 µA (1.56 nA) 20 µA (625 pA)
10 µA (313 pA) 5 µA (156 pA) 2 µA (62.5 pA)
1 µA (31.3 pA) 500 nA (15.6 pA) 200 nA (6.25 pA)
100 nA (3.13 pA) 50 nA (1.56 pA) 20 nA (625 fA) - Applied Potential: ±10 V max
- Compliance: >12 V
- Scan rate: 1 µV/s to >100 V/s (EChem software)
General Purpose Inputs
Input channels: Input 1, Input 2
Input ranges: Range Gain
±10 V 1
±5 V 2
±2 V 5
±1 V 10
±0.5 V 20
±0.2 V 50
±0.1 V 100
±50 mV 200
±20 mV 500
Maximum input voltage: ±30 V (Ch 2, external detector)
Input impedance: ~1 MΩ
Low-pass input filter: 3000 Hz, 2nd order Bessel
DC drift: <1 μV/°C
CMRR (differential): –105 dB @ 100 /s (typical)
Channel crosstalk: > –140 dB
Input noise (p-p): Range @10 /s @100 /s
±10 V 3 μV 5 μV
±1 V 1 μV 2 μV
±100mV 0.25 μV 0.3 μV
Potentiostat
Input channels: Input 3 (current), Input 4 (potential)
Current ranges: ±1, 2, 5, 10, 20, 50, 100 mA
±1, 2, 5, 10, 20, 50, 100, 200, 500 μA
±20, 50, 100, 200, 500 nA
Input impedance: 10 ^13 Ω
Compliance: > 12 V
Bandwidth (unity loop gain): 16 kHz (@ –90° lag)
160 Hz (high stability mode, @ –90° lag)
Voltage offset error: ±1 mV
Voltage gain error: 0.1%
Gain Accuracy: 0.2% at ranges of up to 1 mA
1% at 10 – 100 mA ranges
Slew rate: 3 V/μs
Applied potential ranges: ±200, 500 mV, 1, 2, 5, 10 V
iR Compensation: 0 – 10 MΩ
Sampling
ADC: 24 bit sigma delta convertor
System resolution: 22 bits
Sampling rates: 12 /min to 100 kHz (Chart Software)
100 Hz to 100 kHz (EChem software)
Scan rate: 1 μV/s to >100 V/s (EChem software)
Linearity error: <0.001% of FSR
Output Amplifier
Output configuration: Single-ended
Output resolution: 16 bits
Maximum output current: 10 mA maximum
Output impedance: 0.1 Ω typical
Slew rate: 1 V/μs
Settling time: 20 μs (to within 0.01% of FSR)
Output range: Range Resolution
±10 V 312.5 μV
±5 V 156.5 μV
±2 V 62.5 μV
Linearity error ±1 LSB (from 0 °C to 70 °C)
Instrument Connection Port
Type: 20 pin male connector, 3.5 mm spacing.
Terminal block adaptor supplied.
Digital Output Controls
Outputs: 4 contact closure or TTL level. Set by software.
Contact closures: 100 mA maximum. ±24 V maximum.
‘On’ resistance 25 Ω typical, 50 Ω maximum.
Close time 1.5 ms; Open time 1 ms.
TTL level: 4 V high @ 1 mA maximum each
0.5 V low at 15 mA maximum each
Microprocessor and Data Communication
CPU: FREESCALE DSP56858
RAM: 16 MB SRAM
EEPROM: 4 MB
Data communication: USB 2.0 or 1.1 compliant
Expansion Ports
I2C expansion port: Power and control bus for eDAQ Amps
(maximum of 500 mA).
Physical Configuration
Dimensions (w x h x d): 200 x 65 x 250 mm (7.9 x 2.6 x 9.8")
Weight: 1.75 kg (3 lb 14 oz)
Power Requirements: 90 – 250 V AC 50/60 Hz, 25 VA
Operating conditions: 0 to 35 °C
0 to 90% humidity (non-condensing)
More Information
ER466_Potentiostat (390 KB PDF)
Also see:
ES500 Chart and Scope Software
ES260 EChem Electrochemistry Software for Voltammetric Techniques
ER461 EChem Startup System
ET014 EChem Electrode Kit
EA167 Dual Reference Adaptor