ER815  Contactless Conductivity Detector

ER815 Contactless Conductivity Detector
ER815 Contactless Conductivity Detector
  • For capillary electrophoresis and chromatography techniques
  • Eliminates drift and erronious readings due to fouled electrodes!
  • Wide settings range for optimum conductivity detection
  • Conductivity profiler for optimization of settings
Unit Price: $ (USD) 2765.00


The ER815 C4D Detector is a high sensitivity capacitively-coupled contactless conductivity detector (C4D). This single channel system can be used for capillary electrophoresis, microchip electrophoresis, ion chromatography/HPLC, flow injection analysis and novel applications.

The excitation frequency and amplitude can be optimised by the user for maximum signal sensitivity. The unit must be used together with an eDAQ C4D headstage suitable for your application.

The ER815 is available in the following configurations, depending on your application:

  • ER815R: includes PowerChrom software, for capillary electrophoresis, microchip electrophoresis and chromatography-type applications.
  • ER815C: includes Chart software, for flow injection analysis and conductivity monitoring applications.
  • ER815: for people wishing to use third-party software to record the data. This includes ChemStation from Agilent, 32 Karat from Beckman Coulter and LabVIEW (using the virtual serial interface over USB connection to computer). In this configuration, the ER815 provides both analog and serial data output.

Users can change the configuration of their ER815 themselves at any time, from using eDAQ software to third-party software or vice-versa, using the ER8x5 Converter and Updater software.

The ER825 C4D Detector is a multi-channel version of the single-channel ER815. The ER825 can record the conductivity at up to eight positions on a capillary or tubing.

Research Areas

Technical and Application Notes

Technical Notes

Application Notes


  • Quantitative Characterisation of Conductive Fibers by Capacitive Coupling.  Andres Ruland, Rouhollah Jalili, Attila J. Mozer, and Gordon G. Wallace.  Analyst, 2017.  DOI: 10.1039/C7AN00442G
  • Clinical screening of paraquat in plasma samples using capillary electrophoresis with contactless conductivity detection: Towards rapid diagnosis and therapeutic treatment of acute paraquat poisoning in Vietnam.  Anh Phuong Vu, Thi Ngan Nguyen, Thi Trang Do, Thu Ha Doan, Tran Hung Ha, Thi Thao Ta, Hung Long Nguyen, Peter C. Hauser, Thi Anh Huong Nguyen, Thanh Duc Mai.   Journal of Chromatography B, 1060, 111–117, 2017.   DOI: 10.1016/j.jchromb.2017.06.010
  • Electric field-driven extraction of lipophilic anions across a carrier-mediated polymer inclusion membrane.   Hong Heng See, Peter C. Hauser.   Analytical Chemistry, 83, 7507-13, 2011.   DOI: 10.1021/ac201772g
  • Optimization of capillary electrophoresis method with contactless conductivity detection for the analysis of tobramycin and its related substances.   Mohamed N. El-Attug, Jos Hoogmartens, Erwin Adams, Ann Van Schepdael.   Journal of Pharmaceutical and Biomedical Analysis, 58, 49–57, 2012.   DOI: 10.1016/j.jpba.2011.09.032
  • Capillary electrophoresis with capacitively coupled contactless conductivity detection for the determination of cis/trans isomers of octadec-9-enoic acid and other long chain fatty acids.   Yong Foo Wong, Bahruddin Saad, Ahmad Makahleh.   Journal of Chromatography A, 1290, 82-90, 2013.   DOI: 10.1016/j.chroma.2013.03.014
  • Referenced Capacitively Coupled Conductivity Detector for Capillary Electrophoresis.   Marko Stojkovic, Boris Schlensky, Peter C. Hauser.   Electroanalysis, 2013. DOI: 10.1002/elan.201300413
  • The analysis of small ions with physiological implications using capillary electrophoresis with contactless conductivity detection.   Ioan-Ovidiu Neaga, Bogdan Cezar Iacob, Ede Bodoki.   Journal of Liquid Chromatography & Related Technologies, 2014.   DOI: 10.1080/10826076.2013.825862
  • Study on urinary metabolic profile of phenylketonuria by micellar electrokinetic capillary chromatography with dual electrochemical detection.   Dongli Zhang, Wenli Li, Junbo Zhang, Wanrong Tang, Chenxu Qian, Minghao Feng, Qingcui Chu, Jiannong Ye.   Analytica Chimica Acta, 2011.   DOI: 10.1016/j.aca.2011.03.044
  • Flow injection determination of free fatty acids in vegetable oils using capacitively coupled contactless conductivity detection.   Ahmad Makahleh, Bahruddin Saad.   Analytica Chimica Acta, 694, 90–94, 2011.   DOI: 10.1016/j.aca.2011.03.033
  • Determination of creatine and phosphocreatine in muscle biopsy samples by capillary electrophoresis with contactless conductivity detection.   Hong Heng See, Julia Schmidt-Marzinkowski, Worapan Pormsila, Réjane Morand, Stephan Krähenbühl, Peter C. Hauser.   Analytica Chimica Acta, 727, 78-82, 2012.   DOI: 10.1016/j.aca.2012.03.055
  • Determination of underivatized long chain fatty acids using RP-HPLC with capacitively coupled contactless conductivity detection.   Ahmad Makahleh, Bahruddin Saad, Gan Hui Siang, Muhammad Idiris Saleh, Hasnah Osman, Baharuddin Salleh.   Talanta, 81, 20-24, 2010.   DOI: 10.1016/j.talanta.2009.11.030
  • Capacitively coupled contactless conductivity detection as an alternative detection mode in CE for the analysis of kanamycin sulphate and its related substances.   Mohamed N. El-Attug, Erwin Adams, Jos Hoogmartens, Ann Van Schepdael.   Journal of Separation Science,34, 2448–2454, 2011.   DOI: 10.1002/jssc.201100267
  • Simultaneous determination of atenolol and amiloride in pharmaceutical preparations by capillary zone electrophoresis with capacitively coupled contactless conductivity detection.   Khaldun M. Al Azzam, Bahruddin Saad, Hassan Y. Aboul-Enein.   Biomedical Chromatography, 24, 948-53, 2010.   DOI: 10.1002/bmc.1390
  • Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection.   Camilla Benevides Freitas, Roger Cardoso Moreira, Maria Gizelda de Oliveira Tavares and Wendell K. T. Coltro.   Talanta 147, 335–341, 2016.  DOI: 10.1016/j.talanta.2015.09.075
  • Determination of Major Inorganic Ions in Solution of the Nutrient Film Technique Hydroponic System by CZE with Capacitively Coupled Contactless Conductivity Detection.  Takato Hasebe, Chisaki Hiroshima, Ryota Azuma, Mitsuru Abo. Bunseki kagaku 65(5):283-288, 2016.  DOI: 10.2116/bunsekikagaku.65.283



C4D Profiler V2 Software to Optimise C4D Settings
C4D Configurator Software

View more related videos on the Screencast Training Videos Wiki

  • Channels: 1
  • Input connector: 10 pin LEMO (for C4D) or DIN (for other detectors)
  • Signal gain: x1, x10, x100
  • Analog signal resolution: 16 bits (Chart software), 24 bits (PowerChrom software)
  • Virtual serial port resolution: 24 bit
  • Input gain ranges: ±20, 50, 100, 200, 500 mV ±1, 2, 5 V
  • Excitation frequency: 20 — 2000 kHz
  • Excitation amplitude: 1 — 20 V AC p-p, sinusoidal, @ <50 mA
  • Offset: ±5.5 V on ±10 V output range
  • Low pass filters: 1000 (off),10, 1 Hz
  • Output signals: ±5 V max, or USB with virtual serial interface
  • Back panel connectors: BNC (analog voltage), USB (virtual RS232 serial)
  • Trigger input from a Contact closure or TTL with the supplied EC073 Trigger cable
  • Power requirements (mains adaptor supplied): 12 V DC, ~10 W
  • Dimensions (h × w × d): 65 × 200 mm × 250mm (2.6 × 7.9 × 9.8”)
  • Weight: 1.8 kg (4.3 lb) maximum
  • Operating temperature: 0 to 35 °C
  • 0 to 90% humidity (non-condensing)


  • The optimum excitation frequency and amplitude can be measured using the C4D Profiler V2 software.
  • The excitation frequency and amplitude can be set by using:
    - When serial firmware is installed: use C4D Configurator software.
    - When applications firmware is installed: use the option in PowerChrom or Chart software.
  • The firmware can be changed by the user at any time, between serial firmware (signal recorded in third-party software) and applications firmware (signal recorded in eDAQ software), using the ER8x5 Converter and Updater software.
eDAQ reserves the right to alter these specifications at any time.